Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

What is electrochemistry?

Electrochemistry enables the unique activation of reagents enabling selectivity and transformations not possible by other techniques. The transfer of electrons drive reactions and transformations, meaning that electrochemistry is a surface phenomenon whereby reactions are optimised when there is a high surface area to volume ratio.

Electrochemistry in flow means that the substrate can be streamed through in between two electrodes. As a result, the ability to adjust the flow rate will adjust the amount of time that the substrate is exposed to the electron transfer process.

The advantage of this over typical batch methods means that we can maximise the potential of the surface phenomenon properties i.e. reducing the distance between the electrodes for more efficient electron transfer. As such flow electrochemistry greatly allows for better control and selectivity of the reaction.

Benefits of electrochemistry in flow chemistry applications

Along with the ability to access unique reactions and transformations that are not possible by other techniques, electrochemistry also enables:

  • A reduction in the quantities of toxic and hazardous oxidizing/reducing agents used
  • The generation of reactive intermediates. Ideal for multi-step syntheses
  • Rapid Oxidations and ReductionsOxidative synthesis of drug metabolites
  • Oxidative synthesis of drug metabolites

In an electrochemical reaction, the reaction is driven by the number of electrons available to activate molecules to result in the desired reaction.

Conducting electrochemistry in flow means that you can stream substrate continuously in between the electrodes during electron transfer. The ability to adjust flow rates means that the residence time of electrochemical reactions is under tight control with residence times often determining the product distribution and control of by-product formation.

Additionally, after the initial set-up of your experiment. Electrochemical reactions can be continuously run and collected in an automated fashion. As a result, running in flow means you can get larger volumes of substrate undergoing electrochemical reactions and get larger quantities of product per experiment.

As you are also streaming fluid in a channel between two electrodes, reducing the distance between the electrodes allows for better control of the number of electrons that are transferred to the substrates enabling better control and selectivity of the reaction meaning that alongside more accurate product distribution you will also obtain higher yields of product.

Syrris Asia System in use in a laboratory

Core flow principles mean that temperature control is also substantially more efficient during electrochemical reaction, as smaller channels promote much more efficient heat transfer, as a result, a range variables can be controlled in a single electrochemical reaction to achieve the desired conditions. All these factors mean that electrochemical reactions in flow can occur much faster than the analogous reaction in a batch process with reactions that can take up to several hours typically occurring in several minutes whilst also giving more, well-distributed produce due to the amount of control afforded when running Electrochemistry in flow.

All these factors mean that electrochemical reactions in flow can occur much faster than the analogous reaction in a batch process with reactions that can take up to several hours typically occurring in several minutes whilst also giving more, well-distributed produce due to the amount of control afforded when running Electrochemistry in flow.

Related products

These products are suitable for reagentless chemistry applications. If you’d like to chat more about your application, get in touch.

Get in touch